
1

On Classes of Distributed Petri Nets

Jens-Wolfhard Schicke-Uffmann

2018-04-11

2

Motivating Example

Consider a network service with (wlog. 2) users:

2

Motivating Example

Consider a network service with (wlog. 2) users:

However, some users are hackers.

2

Motivating Example

Consider a network service with (wlog. 2) users:

However, some users are hackers.

2

Motivating Example

Consider a network service with (wlog. 2) users:

However, some users are hackers.

2

Motivating Example

Consider a network service with (wlog. 2) users:

However, some users are hackers.

2

Motivating Example

Consider a network service with (wlog. 2) users:

However, some users are hackers.

Abstract view: Hacker uses information flow + magic.

3

Motivating Example

Separate information flows!

3

Motivating Example

Separate information flows!

3

Motivating Example

Separate information flows!

3

Motivating Example

Separate information flows!

3

Motivating Example

Separate information flows!

3

Motivating Example

Separate information flows!

4

Motivating Example

Separate shutdown success reporting!

4

Motivating Example

Separate shutdown success reporting!

5

Are We Just Too Stupid?

Maybe there is a better way?

5

Are We Just Too Stupid?

Maybe there is a better way?

Big Data?

5

Are We Just Too Stupid?

Maybe there is a better way?

Paxos?

5

Are We Just Too Stupid?

Maybe there is a better way?

Blockchain?

5

Are We Just Too Stupid?

Maybe there is a better way?

Edge Computing?

5

Are We Just Too Stupid?

Maybe there is a better way?

Use infinitely many computers?

What exactly is an acceptable solution here?

6

Formal Model

Abstract as much as possible. We need:

(Parts of) the system can be in different states

(Parts of) the system can do various things

The parts of the system are spatially distributed

Parts of the system send each other information

7

Petri nets

A Petri net is a tuple

N = (S,T ,F ,M0, ℓ) with

7

Petri nets

A Petri net is a tuple

N = (S,T ,F ,M0, ℓ) with

S a set of places,

7

Petri nets

A Petri net is a tuple

N = (S,T ,F ,M0, ℓ) with

S a set of places,

T a set of transitions

(S ∩ T = ∅),

7

Petri nets

A Petri net is a tuple

N = (S,T ,F ,M0, ℓ) with

S a set of places,

T a set of transitions

(S ∩ T = ∅),

F : (S × T ∪ T × S) → N a

flow relation including arc

weights,

7

Petri nets

A Petri net is a tuple

N = (S,T ,F ,M0, ℓ) with

S a set of places,

T a set of transitions

(S ∩ T = ∅),

F : (S × T ∪ T × S) → N a

flow relation including arc

weights,

M0 : S → N an initial

marking, and

7

Petri nets

A Petri net is a tuple

N = (S,T ,F ,M0, ℓ) with

S a set of places,

T a set of transitions

(S ∩ T = ∅),

F : (S × T ∪ T × S) → N a

flow relation including arc

weights,

M0 : S → N an initial

marking, and

ℓ : T → Act ∪ {τ} a

labelling function.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

8

Dynamic Behaviour – Firing Rule

Let N = (S,T ,F ,M0, ℓ) be a

net.

A multiset M ∈ NS is a

marking of N.

t ∈ T is enabled if •t ≤ M.

A nonempty, finite G ∈ NT

is a step from M to

marking M ′ iff •G ≤ M and

M ′ = M − •G + G•.

[M0〉 denotes the set of

reachable markings.

If [M0〉 ⊆ {0,1}S the net is

1-safe.

9

Distributed Nets

Let N = (S,T ,F ,M0, ℓ) be a

net.

An equivalence relation

≡D ⊆ (S ∪ T)× (S ∪ T) is a

distribution iff

∀t ∈ T , s ∈ •t .s ≡D t , and

if M ∈ [M0〉 and

M[{t ,u}〉M ′ then s 6≡D t .

N is distributed if any

distribution exists.

9

Distributed Nets

Let N = (S,T ,F ,M0, ℓ) be a

net.

An equivalence relation

≡D ⊆ (S ∪ T)× (S ∪ T) is a

distribution iff

∀t ∈ T , s ∈ •t .s ≡D t , and

if M ∈ [M0〉 and

M[{t ,u}〉M ′ then s 6≡D t .

N is distributed if any

distribution exists.

10

Firing Rule with Causality

Non-τ transitions denote

interactions with the

environment.

Tokens remember causal

history.

When recording only set of

historic labels, statespace

becomes finite for finite

nets.

10

Firing Rule with Causality

Non-τ transitions denote

interactions with the

environment.

Tokens remember causal

history.

When recording only set of

historic labels, statespace

becomes finite for finite

nets.

10

Firing Rule with Causality

Non-τ transitions denote

interactions with the

environment.

Tokens remember causal

history.

When recording only set of

historic labels, statespace

becomes finite for finite

nets.

10

Firing Rule with Causality

Non-τ transitions denote

interactions with the

environment.

Tokens remember causal

history.

When recording only set of

historic labels, statespace

becomes finite for finite

nets.

10

Firing Rule with Causality

Non-τ transitions denote

interactions with the

environment.

Tokens remember causal

history.

When recording only set of

historic labels, statespace

becomes finite for finite

nets.

11

Processes

A pair P = (N, π) is a process of a net N = (S,T ,F ,M0, ℓ) iff

N = (S ,T,F,M0, �l) is a net, satisfying

∀s ∈ S .|•s| ≤1≥ |s•| ∧ M0(s) =

{

1 iff •s = ∅

0 otherwise
,

all arc-weights are 1, i. e. F(x , y) ∈ {0, 1} for all x , y and F

can be considered a relation,

F is acyclic, i. e. ∀x ∈ S ∪ T.(x , x) 6∈ F

+, where F

+ is the

transitive closure of F,
and {t | (t , u) ∈ F

+} is finite for all u ∈ T.

π : S ∪ T → S ∪ T is a function with π(S) ⊆ S and
π(T) ⊆ T , satisfying

|π−1(s) ∩M0| = M0(s) for all s ∈ S,
∀t ∈ T, s ∈ S. F (s, π(t)) = |π−1(s) ∩ •t | ∧ F (π(t), s) =
|π−1(s) ∩ t•|, and

∀t ∈ T.�l(t) = ℓ(π(t)).

12

Processes

Let P = (N, π) be a process and N = (S ,T,F,M0, �l).

The end of the net N◦ is the set {s ∈ S | s• = ∅}.

P is maximal iff ∄G.π(N◦)[G〉N .

The set of all maximal processes of a net N is denoted by

MP(N).

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

13

Example: Processes of a Petri Net

14

Labelled Partial Orders

A labelled partial order is a structure (V ,T ,≤, ℓ) where

V is a set of vertices,

T is a set of labels,

≤ ⊆ V × V is a partial order relation,

ℓ : V → T (the labelling function).

15

Pomsets

Two labelled partial orders o = (V ,T ,≤, ℓ) and

o′ = (V ′,T ′,≤′, ℓ′) are isomorphic, o ≅ o′ iff there exists a

bijection φ : V → V ′ such that

∀v ∈ V .ℓ(v) = ℓ′(φ(v)) and

∀u, v ∈ V .u ≤ v ⇔ φ(u) ≤ φ(v).

The pomset of o is its isomorphism class [o] := {o′ | o ≅ o′}.

16

Pomset Traces

Let P = ((S ,T,F,M0, �l), π) be a process.

Let O := {t ∈ T | �l(t) 6= τ}, i. e. the visible transitions of the

process.

The visible pomset of P is the pomset

VP(P) := [(O,Act,F∗ ∩ O× O, �l∩ (O×Act))] where F

∗ is the

transitive and reflexive closure of the flow relation F.

MVP(N) := {VP(P) | P ∈ MP(N)} is the set of visible

pomsets of all maximal processes of N.

Two nets N and N ′ are completed pomset trace equivalent,

N ≈CPT N ′, iff MVP(N) = MVP(N ′).

17

Example: Completed Pomset Trace

17

Example: Completed Pomset Trace

17

Example: Completed Pomset Trace

17

Example: Completed Pomset Trace

18

Completed Pomset Trace Equivalence

Tracks causality

Tracks deadlocks

Tracks divergence

Abstracts from transition identities

Abstracts from decision structure

Abstracts from non-diverging silent transitions

19

Formal Problem Statement

Can we find a 1-safe, finite, and distributed Petri net which is

completed pomset trace equivalent to this specification net?

19

Formal Problem Statement

Can we find a 1-safe, finite, and distributed Petri net which is

completed pomset trace equivalent to this specification net?

19

Formal Problem Statement

Can we find a 1-safe, finite, and distributed Petri net which is

completed pomset trace equivalent to this specification net?

No.

20

Sketch of the Proof

Track only token colour, not full history.

Extend markings to dependency markings

M : (S × 2Act) → N.

Finite 1-safe net has infinite runs, but statespace of size at

most m := (1 + 2|Act|)|S|, i.e. finite.

Lemma: For a dependency marking M,

if M[{t1}〉[{t2}〉 · · · [{tn}〉M

all tokens produced by ti have the same dependencies as

those consumed,

as otherwise, the less-dependent tokens could have been

produced without ti ; violating 1-safety.

21

Sketch of the Proof

Theorem: There is no 1-safe, finite, distributed Petri net which

is completed pomset trace equivalent to our specification.

Specification can fire (ac)mb.

While doing so, some dependency marking Ml must be

reached twice.

With the Lemma, partition the loop into a-coloured and

c-coloured part.

While am can be fired, must also be able to fire cm,

otherwise new pomset with finitely many c but infinitely

many a is generated. Dito with a and c reversed.

In (ac)mb a single transition must have consumed an

a-coloured and a c-coloured token, hence these two

tokens reside on co-located places.

As these tokens lead independently to am resp. cm there

are two concurrently firing transactions consuming them,

hence they must be on different locations.

22

Core of the Problem

The “M” (i.e. optional coordination).

22

Core of the Problem

The “M” (i.e. optional coordination).

Is this particular to completed pomset trace equivalence?

23

Finite Step Failures Equivalence

Whenever the net can only fire visible transitions, record a step

failure pair, i. e.

the trace of labels leading up to this marking, and

all finite multisets of labels which can not fire in the next

step.

Compare set of recorded step failure pairs.

Abstracts from causality

Tracks deadlocks

Tracks divergence

Abstracts from transition identities

Tracks decision structure

Abstracts from non-diverging silent transitions

Tracks concurrency

24

Counterexample for Finite Step Failures Equivalence

25

Coarser than Finite Step Failures?

Without branching structure (“linear–time”):

Decide everything on central location, execute visible

transitions on distributed locations

With interleaving semantics:

Connect all transitions to central scheduling place

When allowing divergence:

Busy-wait all decisions

26

Finer than Finite Step Failures?

Results stable up to branching ST-bisimilarity with explicit

divergence.

Includes practically the entire branching-time part of Rob’s

spectrum.

27

Structures Smaller than M?

Answer comprises the largest part of my thesis

. . . because everything non-M can be implemented

27

Structures Smaller than M?

Answer comprises the largest part of my thesis

. . . because everything non-M can be implemented

About 10 pages to describe the necessary Petri net

construction

About 30 pages for the correctness proof

27

Structures Smaller than M?

Answer comprises the largest part of my thesis

. . . because everything non-M can be implemented

About 10 pages to describe the necessary Petri net

construction

About 30 pages for the correctness proof

(with huge invariant)

27

Structures Smaller than M?

Answer comprises the largest part of my thesis

. . . because everything non-M can be implemented

About 10 pages to describe the necessary Petri net

construction

About 30 pages for the correctness proof

(with huge invariant)

About 8 pages to describe a Petri net to distributed C

compiler used for testing

27

Structures Smaller than M?

Answer comprises the largest part of my thesis

. . . because everything non-M can be implemented

About 10 pages to describe the necessary Petri net

construction

About 30 pages for the correctness proof

(with huge invariant)

About 8 pages to describe a Petri net to distributed C

compiler used for testing

. . . and finding a bug in the already published construction

and proof

28

What About Other Formal Models?

How dependent are the results on the choice of Petri nets

specifically?

Not terribly so: π-calculus results co-developed by Peters

& Nestmann, formal connection was being worked on by

Mennicke.

Some hardware-centric results by Lamport seem related,

no formal connection established.

29

Ways to Evade the Negative Theorems

Don’t use branching time and solve the consensus

problems probabilistically.

Assume bounded message delays (often needed for error

detection anyway).

Use approximately uniform passage of time.

Physical effects not accurately captured by Petri nets.

30

Open Problems and Questions

Where between weak completed step trace equivalence

and finite step failures equivalence become Ms

unimplementable?

Conjecture: There is some “asynchronous branching time”

equivalence (and Ms are implementable therein).

Which structure(s) delineate(s) the limit of distributed

implementability when checking all three of divergence,

causality and branching time?

Stability of Ms in non-safe nets under causality only

conjectured so far.

Efficient modelling of quantum-mechanical effects for

distributed computing.

31

References and Earlier Publications

The thesis includes content from various papers with Glabbeek,

Goltz, Mennicke, Nestmann, Peters (alphabetically ordered).

“External” must-reads:

Best and Darondeau: “Petri net distributability”

Gorla: “On the relative expressive power of asynchronous

communication primitives”

Hopkins: “Distributable nets”

Palamidessi: “Comparing the expressive power of the

synchronous and the asynchronous π-calculus”

Taubner: “Zur verteilten Implementierung von Petrinetzen”

32

Results

Identified the M as a problematic structure for distributed

implementations

Showed stability under causality respecting equivalences

Showed stability under branching time equivalences

Showed the M to be the smallest such structure, by

concrete implementation for all other cases

Showed an infinite hierarchy of bigger problematic

structures exists

Established formal connections between free-choice Petri

nets and asynchronous nets (omitted in this talk)

Described LSGA-nets as an alternative and equivalent

approach to generate distributed nets (dito)

Described structural conflict nets and showed them to be a

class of nets the implementation is valid for (dito)

33

Thank You!

Institut für Programmierung und Reaktive Systeme @

TU Braunschweig

National ICT Australia

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Studienstiftung des deutschen Volkes

