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When considering distributed systems, it is a central i$sue to deal with interactions between
components. In this paper, we investigate the paradigmgnafihgonous and asynchronous interac-
tion in the context of distributed systems. We investigatevhat extent or under which conditions
synchronous interaction is a valid concept for specificadind implementation of such systems. We
choose Petri nets as our system model and consider diffeatioins of distribution by associating
locations to elements of nets. First, we investigate thecephof simultaneity which is inherent
in the semantics of Petri nets when transitions have maliigbut places. We assume that tokens
may only be taken instantaneously by transitions on the daoation. We exhibit a hierarchy of
‘asynchronous’ Petri net classes by different assumptiarossible distributions. Alternatively, we
assume that the synchronisations specified in a Petri netac&l system properties. Hence transi-
tions and their preplaces may no longer placed on separeaéddas. We then answer the question
which systems may be implemented in a distributed way withestricting concurrency, assum-
ing that locations are inherently sequential. It turns bt in both settings we find semi-structural
properties of Petri nets describing exactly the probleensituations for interactions in distributed
systems.

1 Introduction

In this paper, we address interaction patterns in diseihglystems. By a distributed system we under-
stand here a system which is executed on spatially diséiblatcations, which do not share a common
clock (for performance reasons for example). We want tostigate to what extent or under which con-
ditions synchronous interaction is a valid concept for gjpation and implementation of such systems.
It is for example a well-known fact that synchronous commation can be simulated by asynchronous
communication using suitable protocols. However, the timess whether and under which circum-
stances these protocols fully retain the original behavida system. What we are interested in here are
precise descriptions of what behaviours can possibly beepred and which cannot.

The topic considered here is by no means a new one. We givataosfeoview on related approaches in
the following.

Already in the 80th, Luc Bougé considered a similar problarthe context of distributed algorithms.
In [5] he considers the problem of implementing symmetradker election in the sublanguages of CSP
obtained by allowing different forms of communication, daining input and output guards in guarded

*This paper was partially written during a four month stay .e\d Schicke at NICTA, during which he was supported by
DAAD (Deutscher Akademischer Austauschdienst) and NICTA.
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choice in different ways. He finds that the possibility of lempenting leader election depends heavily
on the structure of the communication graphs. Truly symimetthemes are only possible in CSP with
arbitrary input and output guards in choices.

Synchronous interaction is a basic concept in many languBesystem specification and design, e.g.
in statechart-based approaches, in process algebras erddleulus. For process algebras and the
calculus, language hierarchies have been establishedch vetiuibit the expressive power of different
forms of synchronous and asynchronous interaction. In fdhk de Boer and Catuscia Palamidessi
consider various dialects of CSP with differing degreessyhahrony. Similar work is done for the-
calculus in [15] by Catuscia Palamidessi, in [13] by Uwe Nestn and in [8] by Dianele Gorla. A rich
hierarchy of asynchronous-calculi has been mapped out in these papers. Again mixeitesh.e. the
ability to combine input and output guards in a single chodays a central rble in the implementation
of truly synchronous behaviour.

In [17], Peter Selinger considers labelled transition exyst whose visible actions are partitioned into
input and output actions. He defines asynchronous impletiens of such a system by composing it
with in- and output queues, and then characterises thensggteat are behaviourally equivalent to their
asynchronous implementations. The main difference withapproach is that we focus on asynchrony
within a system, whereas Selinger focusses on the asyrmisomature of the communications of a
system with the outside world.

Also in hardware design it is an intriguing quest to use axd#on mechanisms which do not rely on a
global clock, in order to gain performance. Here the sinitabf synchrony by asynchrony can be a
crucial issue, see for instance [10] and [11].

In contrast to the approaches based on language consikgcthd work on CSP or the-calculus, we
choose here a very basic system model for our investigatimmely Petri nets. The main reason for this
choice is the detailed way in which a Petri net representsiaweent system, including the interaction
between the components it may consist of. In an interleabi@ged model of concurrency such as
labelled transition systems modulo bisimulation semanticsystem representation as such cannot be
said to contain synchronous or asynchronous interactibbest these are properties of composition
operators, or communication primitives, defined in termswth a model. A Petri net on the other
hand displays enough detail of a concurrent system to makerédsence of synchronous communication
discernible. This makes it possible to study synchronodsaagnchronous interaction without digressing
to the realm of composition operators.

Also in Petri net theory, the topic which concerns us heredhesady been tackled. It has been inves-
tigated in [9] and [18] whether and how a Petri net can be implated in a distributed way. We will
comment on these and other related papers in the area ohBethieory in the conclusion.

In a Petri net, a transition interacts with its preplacesdnystiming tokens. In Petri net semantics, taking
a token is usually considered as an instantaneous actiocehge synchronous interaction between a
transition and its preplace. In particular when a transitias several preplaces this becomes a crucial
issue. In this paper we investigate what happens if we censidPetri net as a specification of a system
that is to be implemented in a distributed way. For this weotitice locations on which all elements of
a Petri net have to be placed upon. The basic assumptiort imtheaction between remote components
takes time. In our framework this means that the removal akart will be considered instantaneous
only if the removing transition and the place where the tolseremoved from are co-located. Our
investigations are now twofold.

In Section 3 of this paper, we consider under which circuntsta the synchronous interaction between
a transition and its preplace may be mimicked asynchrogotislis allowing to put places and their
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posttransitions on different locations. Following [6], weodel the asynchronous interaction between
transitions and their preplaces by inserting silent (urolable) transitions between them. We investi-
gate the effect of this transformation by comparing the bishas of nets before and after insertion of
the silent transitions using a suitable equivalence notide believe that most of our results are inde-
pendent of the precise choice of this equivalence. Howageexplained in Section 5, it has to preserve
causality, branching time and divergence to some smalhextéed needs to abstract from silent transi-
tions. Therefore we choose one such equivalence, bases glinical convenience in establishing our
results. Our choice istep readiness equivalencé is a variant of thereadiness equivalencef [14],
obtained by collecting the set sfepsof multiple actions possible after a certain sequence dbrBst
instead of just the set of possible actions. We call aasyhchronousf, for a suitable placement of
its places and transitions, the above-mentioned transftiom replacing synchronous by asynchronous
interaction preserves step readiness equivalence. Dieeon the allowed placements, we obtain a hi-
erarchy of classes of asynchronous néitly asynchronousets,symmetrically asynchronougets and
asymmetrically asynchronourets. We give semi-structural properties that charaetgniecisely when

a net falls into one of these classes. This puts the resolts [6] in a uniform framework and extends
them by introducing a simpler notion of asymmetric asynokiro

In Sections 4 and 5 we pursue an alternative approach. Wead$iat the synchronisations specified in
a Petri net are crucial system properties. Hence we enfardecality between a transition and all its
preplaces while at the same time assuming that concurrévityats not possible at a single location. We
call nets fulfilling these requiremenlistributed and investigate which behaviours can be implemented
by distributed nets. Again we compare the behaviours upep itadiness equivalence. We call a net
distributableiff its behaviour can be equivalently produced by a distéldunet. We give a behavioural
and a semi-structural characterisation of a class of nsimiglitable nets, thereby exhibiting behaviours
which cannot be implemented in a distributed way at all. inae give a lower bound of distributability

by providing a concrete distributed implementation for dewiange of nets.

An extended abstract of this paper will appear in the praogsdof the 33rd International Symposium
on Mathematical Foundations of Computer Scielfgd=CS 2008), Toruh, Poland, August 2008 (E.
Ochmanski & J. Tyszkiewicz, eds.), LNCS 5162, Springef&pp. 16-35.

2 Basic Notions

We consider here 1-safe net systems, i.e. places neverroarg/than one token, but a transition can fire
even if pre- and postset intersect.

Definition 1 Let Act be a set ofisible actionsandr ¢ Act be aninvisible action
A labelled net(over Act) is a tupleN = (S, T, F, My, ¢) where
— Sis aset (ofplaces,
— Tis a set (oftransitiong,
— FCSxTUT x S (theflow relation),
— My C S (theinitial marking) and
— 0:T — Act U {7} (thelabelling functio.

Petri nets are depicted by drawing the places as circlesahsitions as boxes containing the respective
label, and the flow relation as arrowar¢s) between them. When a Petri net represents a concurrent
system, a global state of such a system is givenraarking a set of places, the initial state being,.

A marking is depicted by placing a daoker) in each of its places. The dynamic behaviour of the
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represented system is defined by describing the possiblesrmtween markings. A marking may
evolve into a marking//’ when a nonempty set of transitio6fires In that case, for each afs, t) € F
leading to a transitiom in G, a token moves along that arc fronto ¢. Naturally, this can happen only if
all these tokens are available M in the first place. These tokens are consumed by the firingalbat
new tokens are created, namely one for every outgoing artrafsition inGG. These end up in the places
at the end of those arcs. A problem occurs when as a resuliraf €if multiple tokens end up in the same
place. In that cas@/’ would not be a marking as defined above. In this paper we cesfitention to
nets in which this never happens. Such nets are callgafe Unfortunately, in order to formally define
this class of nets, we first need to correctly define the firig without assuming 1-safety. Below we do
this by forbidding the firing of sets of transitions when thigght put multiple tokens in the same place.

Definition 2 Let N = (S, T, F, My, ¢) be a labelled net. Le¥/;, My C S.
We denote the preset and postset of a net elemeatS U T by *z := {y | (y,z) € F} and
xz* :={y | (z,y) € F} respectively. These functions are extended to sets in thed nsanner, i.e.
‘X ={yl|lyez, ze X}

A nonempty set of transitiors# G C T, is called astep fromi/; to M,, notationM; [G) y Mo, if
— all transitions contained i&' areenabled that is

Vie G.*tC My A (M \*t)Nt* =0,
— all transitions ofGG areindependentthat isnot conflicting
Vi,u e Git #u. *tN®u=0At"Nu* =0,

— in M- all tokens have been removed from threplacesf G and new tokens have been inserted

at thepostplaceof G:
My = (M;\*G)UG*.

To simplify statements about possible behaviours of netsise some abbreviations.

Definition 3 Let N = (S, T, F, My, ¢) be a labelled net.
We extend the labelling functiofito (multi)sets elementwise.
—n CP(S) x NAt x P(S) is given byM; 5y My < 3G CT. My [G)y My A A = 6(G)
TN CP(S) x P(S) is defined byM; ——xn My < It € T. 6(t) =7 A My [{t})n M,
—n C P(S) x Act* x P(S) is defined by, L2220 v M, &
VA CY U C SV S PP .1 VL 2 7
WhereiﬁkV denotes the reflexive and transitive closure-ef y.
We write M, iw for IM,. M, iw Moy, My ﬁiw for IM,. M, iw M5 and similar for the
other two relations. Likewis@/; [G)y abbreviatesiM,. M, [G) y M.

A marking M; is said to baeachableiff there is ac € Act* such thatVy ==y M;. The set of all
reachable markings is denoted [3y,) x .

We omit the subscripdV if clear from context.

As said before, here we only want to consider 1-safe netsn&by, we restrict ourselves tontact-free
nets where in every reachable markidd;, € [M,) for all t € T' with *¢ C M,

(Myp\*t)nt* =10.
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For such nets, in Definition 2 we can just as well consider @sition ¢ to be enabled i/ iff *t C M,
and two transitions to be independent witem *u = (.

In this paper we furthermore restrict attention to nets fbiol *¢ # () and*t and¢® are finite for all

t € T ands® is finite for all s € S. We also require the initial markingy/, to be finite. A consequence
of these restrictions is that all reachable markings artefiand it can never happen that infinitely many
independent transitions are enabled. Henceforth, néthwe mean a labelled net obeying the above
restrictions.

In our nets transitions are labelled witistionsdrawn from a set Act) {r}. This makes it possible to
see these nets as modelg@dictive systemdhat interact with their environment. A transitiercan be
thought of as the occurrence of the actign). If £(¢) € Act, this occurrence can be observed and influ-
enced by the environment, but/ift) = 7, t is aninternal or silenttransition whose occurrence cannot be
observed or influenced by the environment. Two transitiohesg occurrences cannot be distinguished
by the environment are equipped with the same label. Inquéati, given that the environment cannot
observe the occurrence of internal transitions at all, fathem have the same label, namely

We use the termplain netsfor nets wher¢ is injective and no transition has the labeli.e. essentially
unlabelled nets. Similarly, we speak mfin T-netsto describe nets whet) = ((u) # 7 = t = u,
i.e. nets where every observable action is produced by aiartiginsition. In this paper we focus on
plain nets, and give semi-structural characterisationdasfses of plain nets only. However, in defining
whether a net belongs to one of those classes, we study iterimeptations, which typically are plain
T-nets. When proving our impossibility result (Theorem 3 eton 5) we even allow arbitrary nets as
implementations.

We use the following variation of readiness semantics [@4Jampare the behaviour of nets.

Definition 4 Let N = (S, T, F, My, ) be a netg € Act* andX C INA%,
<o, X > is astep ready paiof N iff

IM. My =2 MAM 5 AX = {Ae N | a1,

We write Z(N) for the set of all step ready pairs of.
Two netsN and N’ arestep readiness equivalenV ~, N, iff Z(N) = Z(N').

The elements of a seX as above are multisets of actions, but as in all such mugtitett will be
mentioned in this paper the multiplicity of each action acence is at most 1, we use set notation to
denote them.

3 Asynchronous Petri Net Classes

In Petri nets, an inherent concept of simultaneity is buijtsince when a transition has more than one
preplace, it can be crucial that tokens are removed instaotsly. When using a Petri net to model a
system which is intended to be implemented in a distributagl, this built-in concept of synchronous
interaction may be problematic.

In this paper, a given net is regarded aspacificationof how a system should behave, and this specifi-
cation involves complete synchronisation of the firing ofaansition and the removal of all tokens from
its preplaces. In this section, we propose various defimstimf anasynchronous implementatiarf a net

N, in which such synchronous interaction is wholly or palyialiled out and replaced by asynchronous
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interaction. The question to be clarified is whether suchsginehronous implementation faithfully mim-
ics the dynamic behaviour df. If this is the case, we call the n&t asynchronousvith respect to the
chosen interaction pattern.

The above programme, and thus the resulting concept of lagymg, is parametrised by the answers to
three questions:

1. Which synchronous interactions do we want to rule outiyac
2. How do we replace synchronous by asynchronous interéttio
3. When does one net faithfully mimic the dynamic behaviduarmther?

To answer the first question we associalecationto each place and each transition in a net. A transition
may take a token instantaneously from a preplace (when Yiiffthis preplace is co-located with the
transition; if the preplace resides on a different locatiban the transition, we have to assume the
collection of the token takes time, and thus the place loits¢skenbeforethe transition fires.

We model the association of locations to the places anditi@ms in a netN = (S, T, F, My, () as
a functionD : SUT — Loc, with Loc a set of possible locations. We refer to such rection as
a distribution of V. Since the identity of the locations is irrelevant for ourgmses, we can just as
well abstract from Loc and represehtby the equivalence relatioap on S U T given byx =p v iff
D(z) = D(y).

In this paper we do not deal with nets that have a distributioilt in. We characterise the interaction
patterns we are interested in by imposing particular ig&iris on the allowed distributions. The im-
plementor of a net can choose any distribution that satigtiieghosen requirements, and we call a net
asynchronous for a certain interaction pattern if it hasraech asynchronous implementation based on
any distribution satisfying the respective requirements.

The fully asynchronousnteraction pattern is obtained by requiring that all pfaemd all transitions
reside on different locations. This makes it necessary p@ment the removal of every token in a time-
consuming way. However, this leads to a rather small claasyichronous nets, that falls short for many
applications. We therefore propose two ways to loosen #gjgirement, thereby building a hierarchy of
classes of asynchronous nets. Both require that all plaséder on different locations, but a transition
may be co-located with one of its preplaces. Bigmetrically asynchronotusteraction pattern allows
this only for transitions with a single preplace, whereathmasymmetrically asynchronousteraction
pattern any transition may be co-located with one of its laegs. Since two preplaces can never be
co-located, this breaks the symmetry between the preptEaegransition; an implementor of a net has
to choose at most one preplace for every transition, andcaté the transition with it. The removal of
tokens from all other preplaces needs to be implementedimexdonsuming way. Note that all three
interaction patterns break the synchronisation of thertakenoval between the various preplaces.

Definition 5 Let D be a distribution on a néV = (S, T, F, My, ¢),
and let=p be the induced equivalence relation $r 7. We say thatD is
— fully distributed D € 2rp, whenx =p yforz,y € SUT onlyif z =y,
— symmetrically distributedD € 2sp, when

p=pgq forp,gqe s onlyif p = ¢,

t=pp forteT, peS onlyif°*t={p}and

t=pu fort,ueT onlyift=wordpeS.t=pp=pu,
— asymmetrically distributedD € 2ap, when

p=pgq forp,qe S only if p = ¢,

t=pp forteT,peS onlyifpe*tand
t=pu fort,ueT onlyift=wordpesS.t=pp=p u.
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Figure 1: Possible results fép, (V) given different requirements

The second gquestion raised above was: How do we replacersymels by asynchronous interaction?
In this section we assume that if an arc goes from a pldoe transitiort at a different location, a token
takes time to move from to ¢t. Formally, we describe this by inserting silent (unobskl@atransitions
between transitions and their remote preplaces. This leatle following notion of an asynchronous
implementation of a net with respect to a chosen distrilutio

Definition 6 Let N = (S, T, F, My, ¢) be a net, and let be an equivalence relation ¢huU 7.
The D-based asynchronous implementatafV is Ip(N) := (SUST, T UT", F’, My, ') with
ST:= {s|teT, se, s#pt},
T := {ts|teT, se€®t, s#pt},
F':= {(t,s)|teT, set*}U{(s,t) |teT, se, s=pt}
U{(s,ts), (ts,s¢), (se,t) |t €T, s€®t, s#pt},
01T =Y and /l(ts) =71 for tseT".

Proposition 1 For any (contact-free) néY, and any choice ofp, the netl/p(N) is contact-free, and
satisfies the other requirements imposed on nets, listedatidd 2.

Proof In Appendix A. O

The above protocol for replacing synchronous by asynchusrinteraction appears to be one of the
simplest ones imaginable. More intricate protocols, imv@ many asynchronous messages between
a transition and its preplaces, could be contemplated, buvil not study them here. Our protocol
involves just one such message, namely from the preplategosttransition. Itis illustrated in Figure 1.

The last question above was: When does one net faithfullyienine dynamic behaviour of another?
This asks for ssemantic equivalencen Petri nets, telling when two nets display the same behavio
Many such equivalences have been studied in the literaiMlechelieve that most of our results are inde-
pendent of the precise choice of a semantic equivalencengss it preserves causality and branching
time to some degree, and abstracts from silent transitibhsrefore we choose one such equivalence,
based on its technical convenience in establishing oultsgesand postpone questions on the effect of
varying this equivalence for further research. Our choistép readiness equivalencas defined in
Section 2. Using this equivalence, we define a notiobasfavioural asynchronigy asking whether the
asynchronous implementation of a net preserves its balravihis notion is parametrised by the chosen
interaction pattern, characterised as a requirement oallineed distributions.

Definition 7 Let 2 be a requirement on distributions of nets.
A plain net N is behaviourally 2-asynchronousff there exists a distributiorD of N meeting the
requirement2 such that/p(N) ~4 N.
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Intuitively, the only behavioural difference between aNeand its asynchronous implementatibm( V)
can occur when iV a places € *u is marked, whereas ifip (IV) this token is already on its way from
s to its posttransition:. In that case, it may occur that a transitibgz « with s € *¢ is enabled inV,
whereag is not enabled in the described state/p{ V). We call the situation inV leading to this state
of Ip(N) adistributed conflict it is in fact the only circumstance in which,(N) fails to faithfully
mimic the dynamic behaviour af .

Definition 8 Let N = (S, T, F, My, ¢) be a net and a distribution of V.
N has adistributed conflict with respect tD iff

JdtueT Ipe®tn®u.t#FuApZpuNIM e [My)n.tC M.

We wish to call a netV (semi)structurally asynchronouff the situation outlined above never occurs,
so that the asynchronous implementation does not chandeettaviour of the net. As for behavioural
asynchrony, this notion of asynchrony is parametrised bys#t of allowed distributions.

Definition 9 Let 2 be a requirement on distributions of nets.
A net N is (semi)structurally.2-asynchronousff there exists a distributiorD of N meeting the
requirement2 such thatV has no distributed conflicts with respectiio

The following theorem shows that distributed conflicts dibgcexactly the critical situations: For all
plain nets the notions of structural and behavioural asymghcoincide, regardless of the choicezt

Theorem 1 Let N be a plain net, and®? a requirement on distributions of nets.
ThenN is behaviourally2-asynchronous iff it is structurally-asynchronous.

Proof In Appendix A. O

Because of this theorem, we call a plain f2tasynchronous if it is behaviourally and/or structurally
Z-asynchronous. In this paper we study this concept for piais only. When taking? = 2rp we
speak offully asynchronous netsvhen taking2 = 2sp of symmetrically asynchronous ngéd when
taking 2 = 2ap of asymmetrically asynchronous nets

Example 1 The netN of Figure 1 is not fully asynchronous, for its unigu2-based asynchronous
implementation/p(N) with D € Zgp (also displayed in Figure 1) is not step readiness equitaten
N. Infact(e,0) € Z(Ip(N)) \ Z(N). This inequivalence arises becausd j{ V) the option to do an

a-action can be disabled already before any visible actibestplace; this is not possible iW.

The only way to avoid a distributed conflict in this net is biitey ¢ =p p =p w. This is not allowed
forany D € Qrp or D € 2gp, but it is allowed forD € Zp (cf. the last net in Figure 1). Hend¥ is
asymmetrically asynchronous, but not symmetrically aByomous.

SinceZrp C Zsp € Zap, any fully asynchronous net is symmetrically asynchronaund any symmet-
rically asynchronous net is also asymmetrically asynabwen Below we give semi-structural character-
isations of these three classes of nets. The first two stem[B where the class of fully asynchronous
nets is calledA(B) and the class of symmetrically asynchronous nets is c8li&). The clasAA(B)

in [6] is somewhat larger than our class of asymmetricalijnabronous nets, for it is based on a slightly
more involved protocol for replacing synchronous by asyocbus interaction.
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Definition 10 A plain netN = (S, T, F, My, ¢) has a
— partially reachable conflictff

Jdt,ueT Ipe®tn®u.t #uAN3IM e [My)n.*t C M,
— partially reachableN iff
JdtueT Ipe®tN®u.t#un|®ul >1AIM € [My)n.*t C M,
— left and right border reachabl/ iff

t£uNu#vAp#£qAN

Jtu,veT Ipe®tnN®udge®uno. My, My € [Mo)n. *t C My A *0 C M, .

Theorem 2 Let N be a plain net.
— N is fully asynchronous iff it has no partially reachable cimtfl
— N is symmetrically asynchronous iff it has no partially realclke N.
— N is asymmetrically asynchronous iff it has no left and rigbtder reachabl/.

Proof Straightforward with Theorem 1. O

In the theory of Petri nets, there have been extensive stuatieclasses of nets with certain structural
properties likefree choice net§3, 2] andsimple netg3], as well as extensions of theses classes. They
are closely related to the net classes defined here, but teeyeéined without taking reachability into
account. For a comprehensive overview and discussion oéthgons between those purely structurally
defined net classes and our net classes see [6]. Restrighdairtanets without dead transitions (mean-
ing that every transitiont satisfies the requiremeatV/ € [M,). *t C M), Theorem 2 says that a net
is fully synchronous iff it is conflict-free in the structlireense (no shared preplaces), symmetrically
asynchronous iff it is a free choice net and asymmetricaiynahronous iff it is simple.

Our asynchronous net classes are defined for plain nets ©hbre are two approaches to lifting them
to labelled nets. One is to postulate that whether a net ischsgnous or not has nothing to do with
its labelling function, so that after replacing this labweil by the identity function one can apply the
insights above. This way our structural characterisati@ieorems 1 and 2) apply to labelled nets as
well. Another approach would be to apply the notion of bebasal asynchrony of Definition 7 directly

to labelled nets. This way more nets will be asynchronousaliee in some cases a net happens to
be equivalent to its asynchronous implementation in sfite failure of structural asynchrony. This
happens for instance if all transitions in the original metlabelledr. Unlike the situation for plain nets,
the resulting notion of behavioural asynchrony will mokely be strongly dependent on the choice of
the semantic equivalence relation between nets.

4 Distributed Systems

The approach of Section 3 makes a difference between a redezhas a specification, and an asyn-
chronous implementation of the same net. The latter coulthtieght of as a way to execute the net
when a given distribution makes the synchronisations thatrdnerent in the specification impossible.
In this and the following section, on the other hand, we dirapdifference between a net and its asyn-
chronous implementation. Instead of adapting our intnitaout the firing rule when implementing a
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net in a distributed way, we insist that all synchronisaiepecified in the original net remain present
as synchronisations in a distributed implementation. aethe same time we stick to the point of view
that it is simply not possible for a transition to synchrenits firing with the removal of tokens from
preplaces at remote locations. Thus we only allow distidgimst in which each transition is co-located
with all of its preplaces. We call such distributioaffectual For effectual distributiond, the imple-
mentation transformatior, is the identity. As a consequence, if effectuality is paraakquirement
2 imposed on distributions, the question whether a nePiasynchronous is no longer dependent on
whether an asynchronous implementation mimics the bebhawibthe given net, but rather on whether
the net allows a distribution satisfying at all.

The requirement of effectuality does not combine well wik trequirements on distributions proposed
in Definition 5. For if 2 is the class of distributions that are effectual and asymioadly distributed,
then only nets without transitions with multiple preplacesuld be 2-asynchronous. This rules out
most useful applications of Petri nets. The requiremenffetauality by itself, on the other hand, would
make every net asynchronous, because we could assign tied@zation to all places and transitions.

We impose one more fundamental restriction on distribgtiaramely that when two visible transitions
can occur in one step, they cannot be co-located. This igilmasthe assumption that at a given location
visible actions can only occur sequentially, whereas wetw@preserve as much concurrency as pos-
sible (in order not to loose performance). Recall that inriPets simultaneity of transitions cannot be
enforced: if two transitions can fire in one step, they cap fite in any order. The standard interpre-
tation of nets postulates that in such a case those tramsitice causally independent, and this idea fits
well with the idea that they reside at different locations.

Definition 11 Let N = (S, T, F, My, ¢) be a net.
Theconcurrency relation— C 77 is given byt — u < t # u A IM € [My). M[{t,u}).
N is distributediff it has a distributionD such that
—VseS teT.se =t=p s,
— t—uANl(t),l(u) #7=t#pu.

It is straightforward to give a semi-structural charad&tion of this class of nets:

Observation 1 A net is distributed iff there is no sequentg. .. ,t, of transitions witht, — ¢, and
*tioaN®t; APfori=1,...,n.

A structure as in the above characterisation of distributets can be considered as a prolongéd
containing two independent transitions that can be simatiasly enabled.

It is not hard to find a plain net that is fully asynchronoust et distributed. However, restricted to
plain nets without dead transitions, the class of asymuoadlyi asynchronous nets is a strict subclass of
the class of distributed nets. Namely, if a neMdree (where aM is as in Definition 10, but without
the reachability condition on the bottom line), then it $yiteas no sequence as described above.

5 Distributable Systems

In this section, we will investigate the borderline for distitability of systems. It is a well known
fact that sometimes a global protocol is necessary whenucatt activities in a system interfere. In
particular, this may be necessary for deciding choices ioterent way. Consider for example the



van Glabbeek, Goltz and Schicke 11

OL q
2o [o]u ey

Figure 2: A fully markedM.

simple net in Figure 2. It contains &n-structure, which was already exhibited as a problematicion
Section 3. Transitions andv are supposed to be concurrently executable (if we do not teanatstrict
performance of the system), and hence reside on differeatitms. Thus at least one of them, say
cannot be co-located with transitian However, both transitions are in conflict with

As we use nets as models of reactive systems, we allow theoanvent of a net to influence decisions
at runtime by blocking one of the possibilities. Equivalgnte can say it is the environment that fires
transitions, and this can only happen for transitions tratarrently enabled in the net. If the net decides
between: andu before the actual execution of the chosen transition, thi@e@mment might change its
mind in between, leading to a state of deadlock. Thereforevark in a branching time semantics, in
which the option to perfornt stays open until eithet or «» occurs. Hence the decision to fitecan
only be taken at the location af namely by firingu, and similarly fort. Assuming that it takes time to
propagate any message from one location to another, in triibdied implementation of this net can
andu be simultaneously enabled, because in that case we carohadlexhat both of them happen. Thus,
the only possible implementation of the choice betweandw is to alternate the right to fire between
t andu, by sending messages between them (cf. Figure 3). But ifnkieomment only sporadically
tries to firet or u it may repeatedly miss the opportunity to do so, leading tinfinite loop of control
messages sent back and forth, without either transitionfeireg.

In this section we will formalise this reasoning, and shoat thnder a few mild assumptions this type
of structures cannot be implemented in a distributed maanal, i.e. even when we allow the imple-
mentation to be completely unrelated to the specificatinoejgt for its behaviour. For this, we apply the
notion of a distributed net, as introduced in the previougise. Furthermore, we need an equivalence
notion in order to specify in which way an implementation assaributed net is required to preserve the
behaviour of the original net. As in Section 3, we choose stagdiness equivalence. We call a plain net
distributableif it is step readiness equivalent to a distributed net. Wsakpf atruly synchronouset if

it is not distributable, thus if it may not be transformedbiminy distributed net with the same behaviour
up to step readiness equivalence, that is if no such netseXigé study the concept “distributable” for
plain nets only, but in order to get the largest class possild allow non-plain implementations, where
a given transition may be split into multiple transitionsrgang the same label.

Definition 12 A plain net N is truly synchronousff there exists no distributed ne¥’ which is step
readiness equivalent fy.

We will show that nets like the one of Figure 2 are truly syocious.

Step readiness equivalence is one of the simplest and lisasininating equivalences imaginable that
preserves branching time, causality and divergence to somaél extend. Our impossibility result, for-
malised below as Theorem 3, depends crucially on all threpgsties, and thus needs to be reconsidered
when giving up on any of them. When working in linear time satits, every net is equivalent to an
infinite net that starts with a choice between severaiansitions, each followed by a conflict-free net
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Figure 3: A busy-wait implementation of the net in Figure 2

modelling a single run. This netlé-free, and hence distributed. It can be argued that infimfgemen-
tations are not acceptable, but when searching for the @tieak limits to distributed implementability
we don’t want to rule them out dogmatically. When working titeirleaving semantics, any net can be
converted into an equivalent distributed net by removing@hcurrency between transitions. This can
be accomplished by adding a new, initially marked placeh it arc to and from every transition in the
net. When fully abstracting from divergence, even wheneespg causality and branching time, the net
of Figure 2 is equivalent to the distributed net of Figurer8] & fact it is not hard to see that this type
of implementation is possibly for any given net. Yet, the lempentation is suspect, as the implemented
decision of a choice may fail to terminate. The clauge-— in Definition 4 is strong enough to rule
out this type of implementation, even though our step rezsdirsemantics abstracts from other forms of
divergence.

We now characterise the class of nets which we will prove ttddg synchronous.

Definition 13 Let N = (S, T, F, My, ¢) be a net.
N has afully reachable visible purd iff 3t,u,v € T.*tN*u# DA unN® v ADPAtN*v=0A
0(t),6(u),l(v) #7AN3IM € [My). *tU®uU®v C M.

Here apure M is anM as in Definition 10 that moreover satisfids *v = (), and hence & *v, q & *t
andt # v. These requirements follow from the conditions above.

Proposition 2 A net with a fully reachable visible pud is not distributed.

Proof Let N = (S,T,F,My,¢) be a net that has a fully reachable visible pie so there exist
t,u,v € T'andp, q € Ssuchthap € *tN®uiq € *uN*vA*tN*v = D and3IM € [My). *tUuU®v C M.
Thent — v. SupposeV is distributed by the distributio®. Thent =p p =p u =p q =p v butt — v
impliest #p wv. é O

Now we show that fully reachable visible puvks that are present in a plain net are preserved under step
readiness equivalence.

Lemmal Let N = (S,T, F, My, ¢) be a plain net.
If N has a fully reachable visible puM, there exists<o, X> € #Z(N) such thata, b, c € Act.
a#cN{b} € X NMa,c} € X N{a,b} ¢ X N{b,c} ¢ X. (Itisimplied thata # b # c.)

Proof N has a fully reachable visible puk, so there are, u, veT andM € [M,) such thattN®u # ()
A*un®v # DA tN*0 = OAL(L), £(u), L(v) # TA®tUuU®n C M. Leto € Act* such thatMy == M.
SinceN is a plain netM -~ and/((t) # £(u) # £(v) # £(t). Hence there exists ai C INA% such
that<o, X>cZ(N) AN {l(u)} € X AN{l(t),L(v)} € X AN{l(t),L(u)} ¢ X AN{l(u),l(v)} ¢ X. O
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Lemma?2 Let N = (S,T, F, My, ¢) be a net.
If there exists<o, X> € Z(N) such thaBa, b, c € Act. a # cA{b} € X N{a,c} € XN {a,b} ¢ X
N{b,c} ¢ X, thenN has a fully reachable visible puhé.

Proof Let M C S be the marking which gave rise to the step ready gair X >, i.e. My == M and
[V RUAYS VAL VR (Rl Y S 2ds

Asa # b # ¢ # a there must exist three transitiong:, v € T with £(t) = a A (u) = b A ¢(v) = cand
MH{up) A\M[{t, o}y A=(M[{t,u})) N=(M[{u,v})). FromM[{u}) A M[{t,v}) follows *tU*uU®v C
M. FromM [{t,v}) follows *¢t N *v = . From—(M|[{t,u})) then follows®t N *u # () and analogously
for v andv. HenceN has a fully reachable visible puhd. O

Note that the lemmas above give a behavioural property thatléin nets is equivalent to having a fully
reachable visible puril.

Theorem 3 A plain net with a fully reachable visible pub is truly synchronous.

Proof Let N be a plain net which has a fully reachable visible pMreLet N’ be a net which is step
readiness equivalent fy. By Lemma 1 and Lemma 2, als@’ has a fully reachable visible puké. By
Proposition 2N’ is not distributed. ThugV is truly synchronous. O

Theorem 3 gives an upper bound of the class of distributabig. We conjecture that this upper bound
is tight, and a plain net is distributable iff it has no fullgachable visible puril.

Conjecture 1 A plain net is truly synchronous iff it has a fully reachablsible pureM.

In the following, we give a lower bound of distributability Iproviding a protocol to implement certain

kinds of plain nets distributedly. These implementationsndt add additional labelled transitions, but
only provide the existing ones with a communication prot@eahe form of r-transitions. Hence these

implementations pertain to a notion of distributabilityvitnich we restrict implementations to be plain
7-nets. Note that this does not apply to the impossibilityltesbove.

Definition 14 A plain netN is plain-distributableiff there exists a distributed plain-net N which is
step readiness equivalent Ao

Definition 15 Let N = (S, T, F, My, ¢) be a net.
We define thesnabled conflict relatios+ C 72 as

t# u e IM € [Mo). M{t}) A M[{u}) A ~(M[{t,u})).

We now propose the following protocol for implementing néts example depicting it can be found in
Figure 5. As locations we take the places in a given net, amddhivalence classes of transitions that are
related by the reflexive and transitive closure of the erthbtaflict relation. We locate every transition

in its equivalence class, whereas every place gets a ptoedadon. Every place will have an embassy
s in every location|t] where one of its posttransitionsc s® resides. As soon asreceives a token, it
will distribute this information to its posttransitions Ipjacing a token in each of these embassies. The
arc froms to ¢ is now replaced by an arc frosf! to ¢, so if ¢ could fire in the original net it can also fire

in the implementation. So far the construction allows tvamsitions in different locations that shared
the preconditiors to fire concurrently, although they were in conflict in thegamal net. However, if this



14 On Synchronous and Asynchronous Interaction in Distrith@gstems

Figure 4: An example net

situation actually occurs, these transitions would havenbe an enabled conflict, and thus assigned to
the same location. The rest of the construction is a mattgadifage collection. If a transitiarfires, for
each of its preplaces all tokens that are still present in the various embasdiedrolocations|u] need

to be removed from there. This is done by a special interaalsttiontL“]. Once all these transitions (for
the various choices of and[u]) have fired, an internal transitiah occurs, which puts tokens in all the
postplaces of.

Definition 16 Let N = (S, T, F, My, ¢) be a net.
Let[t] := {u € T | t #* u}. The transition-controlled-choice implementation/dfis defined to be
the netN' := (SUS™, TUT", F', My, ') with
STi={sl|seStesyu{®|teT}U
{si 51" [s€ 8, tyues® [u] £ 1]}
T :={[5]|seStu{t'|teT}u
{ti |ses, tues, [u] # 1]}
F' = {(s, )]seS}u
(31,8, (s, t) | s € S,t € s*} U
{(t, @ (@, t) | teT}u
{(t',s)|teT,set’}u
{0, 5), (s, 0, (A 50), 50, (P tl) [ s €S, tu e s®, [u] # 1]}
1T =Candl(TT) ={7}.
Theorem 4 A plain netN is plain-distributable iff#* N — = (.
Proof “=": When implementing a plain ne¥V by a plainT-net N’ that is step readiness equivalent
to N, the# and-— relations between the transitions dfalso exists between the corresponding visible
transitions ofN’. This is easiest to see when writing;, resp.ay-, to denote a transition iV, resp.\N’,
with label a, which must be unique sinc¥ is a plain net, respV’ a plainT-net. Namely ifay # by,

then N has a step ready paito, X > with {a},{b} € X but{a,b} ¢ X. This must also be a step ready
pair of N/, and hencen+ # by+. Likewise,ay — by impliesay: — by-.

Thus if #* N — # 0 holds in N, then the same is the case ff, and henceV’ is not distributed by
Observation 1.

“<" If #£° N — = 0, N can be implemented as specified in Definition 16. In fact, thasition-
controlled-choice implementation of any n®tyields a net that is step readiness equivalen¥VtoSee
Appendix B for a formal proof of this claim. By constructioifi, NV is plain, its transition-controlled-
choice implementation is a plain-net. Moreover, if#* N — = () it never happens that concurrent
visible transitions are co-located, and hence the impléatien will be distributed. O
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Figure 5: A distributed implementation for the net in Figdrepartitioning into localities shown by
dashed lines

Our definition of distributed nets only enforces concurractions to be on different locations if they

are visible, and our implementation in Definition 16 prodicets which actually contain concurrent
unobservable activity at the same location. If this is uirddsit can easily be amended by adding a
single marked place to every location and connecting ttaatepto every transition on that location by a
self-loop. While this approach will introduce new caugatilations, step readiness equivalence will not
detect this.

6 Conclusion

In this paper, we have characterised different grades ofcisgny in Petri nets in terms of structural
and behavioural properties of nets. Moreover, we have ddath an upper and a lower bound of dis-
tributability of behaviours. In particular we have showatteome branching-time behaviours cannot be
exhibited by a distributed system.

We did not consider connections from transitions to thestplaces as relevant to determine asynchrony
and distributability. This is because we only discussedamirfree nets where no synchronisation by
postplaces is necessary. In the spirit of Definition 6 we @dngertr-transitions on any or all arcs from
transitions to their postplaces, and the resulting net dvaiways be equivalent to the original.

We have already given a short overview on related work intt@duction of this paper. Most closely
related to our approach are several lines of work using Retsi as a model of reactive systems.
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Y

Figure 6: A specification and its Hopkins-implementationichlbadded concurrency.

As mentioned in Section 3, classes of nets with certain strakcproperties likdree choice netg3, 2] and
simple netg3], as well as extensions of theses classes, have beersietgrstudied in Petri net theory,
and are closely related to the classes of nets defined hefg], lBike Best and Mike Shields introduce
various transformations between free choice nets, simgiie and extended variants thereof. They use
“essential equivalence” to compare the behaviour of difiemets, which they only give informally.
This equivalence is insensitive to divergence, which igdelipon in their transformations. It also does
not preserve concurrency, which makes it possible to imeidimehavioural free choice netthat may
feature a fully reachable visibl, as free choice nets. They continue to show conditions wvtarh
liveness can be guaranteed for many of these classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jorg Desel iniuce two extensions to extended simple
nets, by excluding self-loops from the requirements imgose extended simple nets. This however
assumes a kind of “atomicity” of self-loops, which we did atibw in this paper. In particular we do not
implicitly assume that a transition will not change the stat a place it is connected to by a self-loop,
since in case of deadlock, the temporary removal of a tokam Buch a place might not be temporary
indeed.

In [16], Wolfgang Reisig introduces a class of systems wiimmmunicate using buffers and where the
relative speeds of different components are guaranteeeé todlevant. The resulting nets are simple
nets. He then proceeds introducing a decision procedutbdgrroblem whether a marking exists which
makes the complete system live.

Dirk Taubner has in [18] given various protocols by whichrgplement arbitrary Petri nets in the OC-
CAM programming language. Although this programming laaggioffers synchronous communication
he makes no substantial use of that feature in the protabelsby effectively providing an asynchronous
implementation of Petri nets. He does not indicate a speagifiivalence relation, but is effectively using
linear-time equivalences to compare implementationseasgiecification.

The work most similar to our approach we have found is the gnéldipkins, [9]. There he already
classified nets by whether they are implementable by a nethdiked among different locations. He
uses an interleaving equivalence to compare an implenemtat the original net, and while allowing
a range of implementations, he does require them to inhemitesof the structure of the original net.
The net classes he describes in his paper are larger tham dfiddection 3 because he allows more
general interaction patterns, but they are incomparabile thbse of Section 5. One direction of this
inequality depends on his choice of interleaving semantibgch allows the implementation in Figure 6.
The step readiness equivalence we use does not toleratddbd aoncurrency and the depicted net is
not distributable in our sense. The other direction of trexjirality stems from the fact that we allow
implementations which do not share structure with the $jgation but only emulate its behaviour. That
way, the net in Figure 7 can be implemented in our approaclepisted.

Still many open questions remain. While our impossibilggult holds even when allowing labelled nets
as implementations, our characterisation in Theorem 4 oohsiders unlabelled ones. This begs the
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Figure 7: A distributable net which is not considered disttable in [9], and its implementation.

question which class of nets can be implemented using &bekkts. We conjecture that a distributed
implementation exists for every net which has no fully redatt visible puréM. We also conjecture that
if we allow linear time correct implementations, all netetae distributable, even when only allowing
finite implementations of finite nets. We are currently wagkbn both problems.

Just as a distributable net is defined as a net that is belmalljoequivalent to, or implementable by, a
distributed net, one could define asynchronously implementaliet as one that is implementable by
an asynchronous net. This concept is again parametrisdwklmhbice of an interaction pattern. It would
be an interesting quest to characterise the various clagsasynchronously implementable plain nets.

Also, extending our work to nets that are not required to lsafé- will probably generate interesting
results, as conflict resolution protocols must keep tracklath token they are currently resolving the
conflict of.

In regard to practical applicability of our results, it wdlde very interesting to relate our Petri net based
terminology to hardware descriptions in chip design. Eggcin modern multi-core architectures
performance reasons often prohibit using global clockdendnfacade of synchrony must still be upheld
in the abstract view of the system.

On a higher level of applications, we expect our results tadaful for language design. To start off, we
would like to make a thorough comparison of our results t@¢hon communication patterns in process
algebras, versions of the-calculus and I/O-automata [12]. Using a Petri net semarifca suitable
system description language, we could compare our netedassthe class of nets expressible in the
language, especially when restricting the allowed compatitn patterns in the various ways considered
in [4] orin [12]. Furthermore, we are interested in applyng results to graphical formalisms for system
design like UML sequence diagrams or activity diagrams hisapplying their Petri net semantics. Our
results become relevant when such formalisms are useddatdkign of distributed systems. Certain
choice constructs become problematic then, as they rely glokml mechanism for consistent choice
resolution; this could be made explicit in our framework.
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A The Asynchronous Implementation

Given a netN and a distributionD on NV, this appendix explores the properties of thebased asyn-
chronous implementatiof, (N) of NV, focussing on the relationship betwegn(/N) and NV, and cul-
minating in the proofs of Proposition 1 and Theorem 1 of $&c8.

For better readability we will use the abbreviations:= {y | (y,z) € F'} andz® :={y | (x,y) € F'}
instead ofx or z* when making assertions about the flow relation of an impleatim.

The following lemma shows how thB-based asynchronous implementation of a Nesimulates the
behaviour ofN.

Lemma3 LetN = (S, T, F, My, ¢) be anetA C Act, 0 € Act* andM;, My C S.

A T X A
1. If M7 — N M, thenl; —Ip(N) " Ip(N) M.
2. If My = MythenM; == (n) M.

Proof AssumeM; [G)y M,. Then, by construction ofp (V),

My [{ts |teG, s€®t, sZpth,m {t1t€G}H ) Ma.

The first part of that execution can be split into a sequenaingleton transitions, all labelled
The second statement follows by a straightforward indaatio the length of. O

This lemma uses the fact that any markingfis also a marking o (V). The reverse does not
hold, so in order to describe the degree to which the behawibLi, (V) is simulated byNV we need to
explicitly relate markings of p (V) to those ofN. This is in fact not so hard, as any reachable marking of
Ip(N) can be obtained from a reachable markingvoby moving some tokens into the newly introduced
buffering placess;. To establish this formally, we define a function which tfan:is implementation
markings into the related original markings, by shiftingsk tokens back.

Definition 17 Let N = (S, T, F, My,¢) be anetand lefp(N) = (SUST,TUT™,F’, My, ().
77 : SUST — Sisthe function defined by

“(p) s iffp=s;withs, €S8, seS,teT
T =
b p otherwise(p € S)

Where necessary we extend functions to sets elementwider 8oy M/ C S U ST we haver— (M) =
{t7(s) | se M} =(MnNS)U{s|s € M}. Inparticular,r (M) = M whenM C S.

We now introduce a predicateon the markings of p (V) that holds for a marking iff it can be obtained
from a reachable marking d¥ (which is also a marking of p(/N)) by firing some unobservable tran-
sitions. Each of these unobservable transitions movesemtfshkm a places into a buffering places;.
Later, we will show thatv exactly characterises the reachable markings¢fV). Furthermore, as every
token can be moved only once, we can also give an upper bouhdvwmany such movements can still
take place.
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Definition 18 Let N = (S, T, F, My,¢) be anetandp(N) = (SUS™,TUT", F', My, ).
The predicater C P(S U S7) is given by

a(M) & 77 (M)e[Mo)n AVp,ge M.77(p) =7"(¢) = p=2¢q.

The functiond : P(SUS™) — NU{co} isgiven byd(M) := |[MN{s|se€ S, Ftes®. s#pt},
where we choose not to distinguish between different degremfinity.

Note thata (M) implies|M| = |7 (M)|, and reachable markings 6f are always finite (thanks to our
definition of a net). Hence/(M) impliesd(M) € IN. The following lemma confirms that our informal
description ofa matches its formal definition.

Lemma4 Let N andIp(N) be as above antl/ C S U S™, with M finite.

PR

ThenVp,qe M. 7 (p) =7 (q) = p=qiff 77 (M) — o) M.

Proof Given thatr— (M) C S, “if” follows directly from the construction of p (V).
For “only if”, assumevp,q € M. 77 (p) = 77 (q) = p = q. Thent™ (M) [{ts | st € M })r,(v) M. O

Now we can describe how any net simulates the behaviour ffliysasynchronous implementation.

Lemmab5 Let N andIp(N) be as aboved C Act, 0 € Act* andM, M’ C SUS™.
1. a(My).
2. If (M) AM ) vy M thent— (M) Loy 7= (M) A a(M).
3. If a(M)AM —5p, vy M thend(M) > d(M') A7 (M) = 77 (M') A a(M).
4. If My ==, () M’ thenMy ==y 77 (M) A a(M").

Proof “1": My € [My)n andVs € My C S. 77 (s) = s.
“2": Supposex(M) and M [G);, vy M with G € T. Sor— (M) is a reachable marking o¥.
Note that for any € 7" we have that—(°t) = *¢. Moreover,o (M) implies that

X, YCMAXNY =0 = 7= (X)N7(Y) =10 (1)
and hence
YCM = 77 (M\Y)=7"(M)\7 (V). 2
Lett € G. Sincet is enabled inV/, we have’t C M and hencét = 7 (°t) C 7 (M). Given thatV
is contact-free and (M) € [My)n, it follows thatt is enabled inr—(M).

Now lett,u € G with ¢ # w. Then°t U°u C M and®t N °u =0, so*tNu=7"(°t) N7 (°u) = 0,
using (1). Given thatt U®u C 7 (M) andN is contact-free, it follows that als® N «* = () and hence
t andu are independent.

SinceM’ = (M \°G)UG° we haver— (M') = (r— (M)\ 7 (°G))UT— (G°) = (= (M) \*G)UG"*
and hence (M) [G)ny 7 (M’).

Next we establiskw()M"). To this end, we may assume tlats a singleton set, fa& must be finite—this
follows since all (independent) transitions@hare enabled from the reachable markirig(A/) of N,
andN satisfies the finiteness restrictions imposed on nets indde&t—and whenV/ [{to, t1, ..., t, }) M’
for somen > 0 then there ar@/y, Mo, ..., M,, with M [{to}) My [{t1}) Ms--- M, [{t,,}) M’, allowing
us to obtain the general case by induction. Sdilet {¢} witht € T.



van Glabbeek, Goltz and Schicke 21

Above we have shown that™ (M’) € [My)n. We still need to prove that™—(p) = 77 (¢) = p = ¢
for all p,q € M'. Assume the contrary, i.e. there arg; € M’ with 7~ (p) = 77 (¢) butp # ¢. Since
a(M), at least one op andg—sayp—must not be present if/. Thusp € t° =t* C S. As77 (q) =
7 (p) = pandq # p, it must be thay € S™. Henceq ¢ t°, sog € M, andp = 7 (q) € 7= (M). As
shown abovet is enabled inr—(M). By the contact-freeness of, (7 (M) \ *t) N t* = (), sop € *t.
Using thatp € M, we find thatp € °t C M, sop #p t andp; € °t C M. As by constructiorit Nt° = (),
we havep; ¢ M', soq # p;. Yett(¢) = p = 7 (p¢), contradictinga(M).

“3" Let ts € T7 such thatVl [{ts}), vy M'. Then, by construction dfp(N), °ts = {s} Ats® = {s¢}-
HenceM’ = M\{s}U{s;} andd(M') = d(M)—1AT"(M') = 7= (M). Moreovera(M') < a(M).
“4". Using 1-3, this follows by a straightforward inducti@m the number of transitions in the derivation
My ==, vy M. O

It follows thata exactly characterises the reachable markingggfV):

Lemma6 Let N andIp(N) be as before andl C SUS™.
ThenM € [MO>ID(N) iff (X(M)

Proof “Only if” follows from Lemma 5.4, and “if” follows by Lemmas and 4. O
Using this we now prove Proposition 1 from Section 3:

Proposition 1 For any (contact-free) néY = (S, T, F, My, ¢), and any choice of p, the net/p(N) is
contact-free, and satisfies the other requirements impmseets, listed in Section 2.

Proof LetM € [Mo),(n)- Thena(M), and hence ™ (M) € [Mo)n.

Consider any € T with °t C M. Assume(M \ °t) Nt° # ). Sincet® = ¢* C S letp € S be such that
p € MNt°andp & °t. As N is contact-free we have— (M) \ *t) Nt* = (), so sincep € 7 (M) N¢*
it must be thap € *¢. Hencep, € °¢t C M and we have # p, yetT (p) =p=7""(p;), violating a(M).
Now consider any,, € 77 with °t,, C M. As°t, = {p} andt,® = {p:} we have thatM \°t,)Nt,° # 0
only if p e M Ap, € M. However,r—(p) = p = 7 (p:) which would violatex/(M).

This established the contact-freenesd 9fN). By construction,M is finite, °t # () and°t and¢° are
finite forallt € T UT™, ands® is finite for alls € SU S7. O

The following lemma is a crucial step in the proof of Theorem 1

Lemma7 Let N = (S,T, F, My, ) be a net without a distributed conflict w.r.t. a distributibn
Let M; € [J\A40>N and My —— 1, vy M2 ——1,8) - ——1p(N) My +—1,(n) for somen > 1.
Then,M; —y iff M, —=Ip(N) forall A C Act.

Proof Supposet C M, but°t Z M, for somet € T. Forp € *t write p; := p; if p Zp tandp; = p
otherwise. Thent = {p; | p € *°t}. Pickp € *t such thatp; ¢ M,,. As M, —/T—>[D(N) we also have
p& M,. Letl < i < n be the last index such thate M; or p; € M;. ThenM; [{up}>ID(N) M4 for
someu € T with u # ¢, p € *u andp Zp u. But this would constitute a distributed conflict w.i. 4

It follows that M, [t) v implies M, [t);,,(ny for all t € T. Moreover, it follows immediately from the
construction of p (V) that if two transitiong, u€T are independent iV, then they are also independent
in Ip(N). HencelM [G) y implies M, [G>1D(N) forall G C T. ThusM; iw implies M, iqD(N).

For the reverse direction, observe thaf\/;) andr (M) = M; bacausd\/[l € [My)n. Hencea(M,,)
and7—(M,) = M; by Lemma 5.3 and/,, —,(n) impliesM; — forall Aby Lemma5.2. O
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Theorem 1 Let N = (S, T, F, My, ¢) be a plain net, anc? a requirement on distributions of nets.
ThenN is behaviourally2-asynchronous iff it is structurally?-asynchronous.

Proof “Only if”: SupposeN fails to be structurally2-asynchronous. LeD be a distribution onV
meeting the requiremen?. ThenN has a distributed conflict with respectiy i.e.

JFueTIpe®tN®u.t#uipZpuNIM e [My)ny.*t C M.

We need to show thdtp (V) %4 N.

Let M € [My)n be such thatt C M and leto € Act* be such thatly ==y M. ThenN has a step
ready pair<o, X > with {{(¢)} € X. As plain nets are deterministid/ is the only marking ofV with
the property thaf\fy ==y M. HenceN has exactly once step ready pair of the form, X >, and it
satisfies{((t)} € X.

Lemma 3 yieldsV/, == 1v) M. LetM; = (M\{p})U{pu}. ThenM [up), ) M, by Definition 6,
soM —— M,. By Lemma 5.3, we hava/, —>1D(N) Moy —>,D(N) —>1D(N) M, +—>ID( n for
somen < d(M)eIN. Asv® C S™ forallv e T™, we havep ¢ M; fori =1,2,...,n. Moreover, in case
p % t we havep; € v° only if p € °v; hence als@; & M; for: =1,2,...,n. It foIIows that°t € M,,.
ThusIp(N) has a step ready paito, X > with {¢(t)} ¢ X. We find thatZ (Ip(N)) # Z(N).

“If": SupposeN is structurally.2-asynchronous, i.e. there is a distributibron N meeting the require-
ment2, such thatV has no distributed conflicts with respectiio We show thatZ(Ip(N)) = Z(N).

“ D" Let <o, X> € Z(N). Then there is a marking/ of N such thatMy ==y M, M A,y for
all A e X and M f—w forall A ¢ X. Lemma 3 yleldsMo :>ID( ~) M. By Lemma 5. 3 we have
Now Lemma 7 yields<o, X > € Z(Ip(N ))

“C" Let <o, X> € Z(Ip(N)). Then there is a marking/ of I(N) such thathy =, M,
M ~+= 1, (N)» andM iqD(N) iff AcX.Lemmab5.4vyields\ly ==y 7~ (M) A (M) and Lemma 4
givest (M) —’1 (vy M. Now Lemma 7 yields<o, X> € Z(N). O

B The Transition-Controlled-Choice Implementation

In this appendix we show that the transition-controlledich implementation of any ne¥V is step
readiness equivalent . To this end we use the following result.

Lemma8 LetN = (S,T,F, My, ¢) andN’ = (S, T, F', M, ') be two nets, and (t) # 7 fort € T".
Suppose there is a functiari= : P(S) — P(S’) from the markings ofV to the markings ofV’,
adistancefunctiond : P(S) — IN U {co} and a predicatg C P(S) such that

B(Mo) AT (M) = My 2)
B(Mi) A M1 %N My, = B(M) ATE(Ms) = 7 (My) Ad(My) > d(Mo) 2)
BIMy) AM; 2y My = B(Ms) AT (M) =2 5o 75 (M) 3)
B(My)Nd(My) >0 = M; —y (4)
BMy) Ad(My) = 0A (M) S My, = 3My. My 5y My A MY =75(Ms) . (5)

ThenN ~4 N'.
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Proof “Z(N) C #(N')": Conditions (1-5) allow any step ready paiw, X > of N to be mimicked
step for step byN’. To be precise, iko, X > € Z(N), then there is a marking/; with My == M,
M, +“—x, M iw forany A € X and M, f—w forany A ¢ X. As for all reachable markin/le
of N, we have3(M;). Now (1-3) implyM}, =% v 7<(M;). Furthermore, (3) implies=(M;) —=
forany A € X, (4) impliesd(M;) = 0, and hence (5) implies< (M) —/A—>N/ foranyA ¢ X.

“Z(N') C Z(N)": From conditions (2-5) we infer:

ﬁ(Ml) = E|M2 M1 L;;V M2 A M2 VN AN ﬂ(Mz) AT¢(M2) = Tﬁ(Ml) (6)
BIMY) ATE(My) Sy My = 3My. My —Ton 55 My A B(My) A M, = 75(My)  (7)

The first statement follows by repeated application of (2¢;4econd by repeated application of (4) and
(2), then (5) and (3). Conditions (1) and (7) imply that evesgchable marking oV’ is of the form
7<(M) with M a reachable marking d¥. Moreover, (1), (6) and (7) yield, far € Act*,

My = M' = 3IM. Mg ==y MAM = ANB(M)ANM' =75(M) .
In combination with (3-5) this implies that any ready pair, X > of N’ is also a ready pair aV. O

In fact, conditions (1-5) are strong enough to show fi@nd/ N’ are semantically equivalence in various
other ways as well; in particular™= constitutes doranching bisimulatiorbetweenV and N’, as defined

in [7]. In order to apply Lemma 8, we will tak® to be the transition-controlled-choice implementation
of a given net\N’ that features no transitions labelled

Definition 19
Let N’ = (S, T, F', My, ¢') be anetwitt/'(t) # 7 fort e T, andN = (SU ST, T UT", F, My, {)
its transition-based-choice implementation.

The functionT< : P(SU S™) — P(S) is defined by
TEM):=(MNS)U{s|ses {sll|tesy CM}U{s|set® A(D)e M}.
The functionT= : P(S U S7) — P(95) is defined by
(M) :=MNS)U{s|seS{stestnM£0}u{s|setr(t)e M}.
The functiond : P(S U S™) — IN U {oco} is defined by

d(M) == [MNS|+ > Q+[E)+ > 1.

©eM stlemr
The predicated C P(S U S7) is defined by
B(M) w6 7 (M) € [Mo)nr A (51)
(s[ﬂ 6M:>5¢M) A (B2)
(s[u} eMAs ¢ M= Tves sle M) A (B3)
(O.@eMnat#u="tN"u=10)A (B4)

(s,[f” eM=35"¢MAsM @ e M) A (B5)
(El[f‘] eM=@e M) A (86)
(@E M =Vsec® ues® s sl ¢ MA ([u] # [t] = s,[fu} GM\/E?] EM)) . (B7)
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Some conjuncts in the definition G{ A1) are universally quantified over (some ef)t andu; we write
— B£H%(M) to say that marking!/ satisfies the instance of for the specific values, t andu,
— B&(M) for Vt,u € s°. B4 (M),
— andg;(M) for Vs € S. 37 (M),

so that3(M) iff 51 (M) A B2(M) A B3(M) A Ba(M) A B5 (M) A Be(M) A B7(M).

Lemma9 LetN', N, 7,7, d, andg3 be as in Definition 19.
ThenN is a net as defined in Section 2 and the clauses (1)—(5) of Lerimoéd.

Proof Again, we us€zx andx°® instead of*xz andx®* when making assertions about the flow relation
of N (the implementation). Given that # () and®t and¢*® are finite for allt € T ands® is finite for

all s € S, by construction we hav& # () and°t and¢° are finite for allt € T'U T ands°® is finite for

all s € SU S™. As N has the same initial marking @', it must be finite. In order to show thaf is
contact-free, we must show that for each reachable martking [M;) x the following four properties
are satisfied:

(i) If s e M thensl!l ¢ M forall ¢ € s°.

i) If s, st € M thensi) ¢ M.
(iii) If st € M for all s € * then(?) ¢ M ands[") ¢ M for all s € *¢ andu € s* with [u] # [1].
(v) If HeM and§£”] € M forall s € *t andu € s® with [u] # [t], thenM N¢* = (.

We proceed to show that all four properties are impliedsby/). This entails that the contact-freeness
of N will follow immediately from the validity of clauses (1)-®f Lemma 8.

Property (i) follows immediately frons, (M) and (i) from 35(M). The claim(t) ¢ M of property (iii)
follows from 3; (M), and using this the claim ¢ M from g5(M). For (iv), assume, towards a contra-
diction, that(t) € M, yets € M N t*. Then®*t C 7<—(M). Now £ (M) and the contact-freeness &7
gives(t—(M)\*t)Nt* =0. Asse M Nt* C 7 (M) Nt* we obtains € *¢, contradictings; (M).

It remains to show the validity of clauses (1)—(5). Claugdgllows directly from the definitions.

Clause(2): Assume3(M;). As remarked in Section 2, reachable marking&/ofre finite, so by3; (M)
My NS is finite andM; contains only finitely many places of the fofi) (using34(M;) and thatt # ()
for t €T). Since for a given, using thatt ands® are finite, there are only finitely many placg$' in IV,

it follows by 35 (M) that M; contains only finite many places of the forsiﬁ]. From this we conclude
thatd(M,) is finite. We proceed by a case distinction over all transgitabelledr.

AssumeM; [[5])n My. ThenMy = (M \ {s}) U {sl! | t € s*} and7=(My) = 7 (M) as well as
7=(M,) = 7=(M,). Moreover,d(M,) = d(M,) — 1 ass € M; N S buts ¢ M, and thes! don't
contribute tod. It remains to check that(/,). We will do that for each of the six conjuncts separately.
The validity of 3, is clearly preserved, in the sense tivat);) implies 5, (Mz). The same holds for
4 and g, as places of the forr(x) and§£“] do not figure as pre- or postplaces of the transition
Requiremenpis (M,) simply holds, ass ¢ M,, whereas for’ # s requirement3s (M) is preserved.

In the same way we obtaijs (Ms), 85 (Ms) and 57 (Ma).

AssumelM; [t1) v My, Thendy = (M \ {si), sty U {51}, Fromsl” € M, we obtain(t) € M,
by 8554%(My) andsl! ¢ M, by 3;(M;). Hence the removal of any does not affect*, and we
haver<(Msy) = 7<(M;). As the only change in summands contributing/ts the removal ofsl[f‘},
we haved(M,) = d(M;) — 1. Since(t) € M, the removal ofs“ does not affect“= either, and we
haver<=(M,) = 7<= (M;). Hencep, is preserved. Requiremeni**(M;) holds (sinces™ ¢ M)
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andjs ' for s ;é sort’ # uis preserved. Likewisejs**(M;) holds (sinces*! ¢ My) and g5t
with s’ # s oru’ # u is preserved. Requiremeft®t*(Ms) holds (because,@“} M), and 35"
with s’ # s oru’ # u is preserved. As foBs ' with t' # t, by B4(M7) we hav ¢ M, and hence
by G55t (M) it must be thats[“ ¢ M, and thu59t, ¢ M. This yieldsgs>!“(Ms,). Since(t) € M,
we have(t) € M, and hencesg ”“(Mz) holds. All other instances g¥; are preserved. Requirements
(B4 and3; are preserved as well.

Assumel; [t')y M. ThenM, = (M \ {0,351 | se*t, ue s, [u] # [t]})U{s | st} and

75(My) = 7<(My). Againd(Ms) = d(M;) — 1 as the singlé€?) contributedl + |t*| whereas all the
newly produced placestogether contributét®|. As@ € M; we have*t € 7 (M;). Moreover, for
s € *tandu,v € s°, [u] # [t], v # t we have(t), 3, lul ¢ M, sos, sl ,(v) & My by 37(M;) and 34(M;)
andsy‘}, sq[) ,s[“ ¢ M, by 35(M;) andBs(M;). Hence(t) is the only place inVf; that contributes € *t
to 7 (M;). Thereforer = (My) = (7 (M;) \ *t)Ut®. Hencer = (M) [{t})n» 7 (M3), SOf; IS
preserved. Requirements, 5,4, 55 and 3 are easily seen to be preserved as well. SiNités contact-
free, we havem—(M;) \ *t) Nt* = 0, usingB; (M;). So fors € t* we have eithes ¢ 7 (M) or
s € *t. Either possibility impliess* ¢ A, for ue s*, and(v)¢ M; forve s*, v # t. Hences!", (w)¢ M,
for u € s®. Using this, alsgd, and3; turn out to be preserved.

Clause(3): Assumed(M;) A My [G)yn Mo with £(t) # 7 forall t € G. Then
My = (M \°G) UG =My \ (sl | s €°GLU{@D, s/ [teG, st ues®, [u] # 1]}

Forallt € G ands € *t we haves!! € M, and hences € 7<= (M;). ThusT<= (M;)[t) n+
Claim1: Lett € G, s € *t andu, v € s*. Then(v) ¢ M; andsl*l € M.

Proof: Assume, towards a contradiction, tfia} € M;. Then®v C 7 (M) and thusr— (M) [v) N+
As s € *tN*v we have~7—(M;)[t, v) N, SOF1 (M) and Definition 15 yield#wv, and hencét] = [v].
Nevertheless3; (M) givess!” ¢ M, whereas:!!l € M;. 4

Next assume that*! ¢ M. Thengs%t(M;) yields3v € s° st e My, andgsv (M) gives(v)e M. 4
Claim2: Letty,ty € G with ¢4 # to. Then*t; Nt = 0.

Proof: Assume, towards a contradiction, that *t; N *te. ThenT(M;)[t1) N andT (M7)[t2) N7,
but =7 (Mj)[t1,t2) N7, SO [1(M;) and Definition 15 yieldt; #t2, and hencdt,] = [to]. But this
implies sl = slt2] € °¢; N °t,, contradictingh; [G) .4

Claim3: Lett € G, s € *t andv € *s. Thens, (v) ¢ M;.

Proof: Sinces(tl e M, we haves ¢ M, by 32(M;). Assume, towards a contradiction, that € M;. Then
*v C 7 (M) € [My)n, usingf3y (M7). As N' is contact-free, we haug~—(M;) \ *v) Nv®* = 0. So
sinces € 7 (M) Nv* it must be that € *v. But then(v) ¢ M, by Claim 14

Claim 1 implies thatG C 7= (M), and Claim 2 yields< (M) [G) n+ M} for someM,. By Claim 3
we haver<(M; \ °G) = 7=(My) \ *G and thus

S(My) = 75((M; \ °G) UG®) = (< (My) \ *G) U G® = M}

It remains to check that(M5). First of all, 7 (M) = 7 (M;) and hence?, is preserved. Itis easy
to see thatly, s and 37 are preserved. Requiremenf for s ¢ *G is also preserved, where8s (M-)

for s € *t, t € G holds withv := ¢. Requiremeni3, may fail to be preserved only #t;, ¢ty € G with

t1 # to and®ty Ny # Qorif 3t e G and(v) € M; with *t N *v # (). These cases are ruled out by
Claims 2 and 1. Requiremenfi® with s ¢ *G is preserved. Since there is @9 € M; with *G N *v # 0,
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by (G5(My) and Gg(M;) there are n(sL“},Eq[)”] € M; with s € *G. Moreover, for allt € G, s € *t and
u € s* with [u] # [t] we haves*! € M, and hence! € M,. Thus we obtairgs* (M) for s € *G.

Clause(4): By a case distinction on the three summandg(af ).
Assumeds € M1 N S. ThenM;[[s]) .

Assumedsi € M. Then bygs(M;) alsosl € M; and hencels; [t1) v

Assumed(®) € M; but —3s") € My. Then bys;(M,) alsoJs," € M, for all s € *t andu € s* with
[u] # [t]. ThusMy[t') n.

Clause(5): d(M;) = 0 implies M; N S = () and M; does not contain places of the fofi) or sE“]. By
Be(M7) it doesn’t contain places of the for?nﬁ”] either. Hence all places if/; have the forms!!l for
s € S andt € s*. Moreover, by3s(M;), for anys € S either M; contains all places!! with ¢ € s* or
none. Thus\; = {sl | s € 7=(M), t € s°}. Using this, whern<= (M) [G)n+ M} for G C T, there
is a uniqueM, such thatM; [G) y Ms. It remains to show that= (M) = M.

First of all, note that\/, N S = (). Secondly, we have
{s|ses {s|tes}CM}y={s|ser(M), s €°G}=7"(M)\°G.

Finally, {s | sct* A1) € My} = {s|sct* Nt € G} =G".
Thus, applying Definitions 19 and 2= (M) = (7= (M;) \ °G) U G* = M. a

Definition 20 For N a net and and action, letV/: be the net obtained by renaming all occurrences of
iinto .

Proposition 2 If N ~4 N’thenN/i ~4 N'/i.

Proof <o, X> is a step ready pair aV/i iff N has a step ready paitp, X >, where the sequence
can be obtained from by deleting all's, and{i} ¢ X. O

Theorem 2 Any net is step readiness equivalent to its transition+odied-choice implementation.

Proof Let N. = (S,T,F', My, t.) be anetandV, = (SUS™, T UT", F, My,/,) its transition-
controlled-choice implementation. Obtai from N and N from N, by changing all--labels of
transitions in—but not those i'™—into i. ThusN = (SUS™, T UT7, F, My, ¢) where/ satisfies
Lty =1ifteT™; Ut) =iif te T andl (t) = 7; andl(t) = ¢,(t) otherwise. ThenV is still
the transition-controlled-choice implementationf, and moreoveN’ has nor-labels. Furthermore,
N'Ji = N.and N/i = N,. Lemmas 8 and 9 yieldV ~, N’. So by Proposition 2 we obtain
N/i~g N'/i,whichisN, ~4 N.. O



